
Labeled Chip Firing on Binary Trees

Monique Roman and Jasper Hugunin

August 9, 2017

1 Introduction

The chip firing game has its roots in the abelian sandpile model that was first introduced by Bak, Tang and
Wiesenfeld and later refined by Dhar. [1][2] The labeled chip firing process created by Hopkins, McConville,
and Propp, investigates chip firing on the infinite path graph Z. Consider this: “we start with n labeled chips
(1), (2), ..., (n) at the origin; at each step we choose any two chips (a) and (b) with a < b that occupy the
same vertex i and fire these chips together, moving (a) to vertex i−1 and (b) to vertex i+1; we keep carrying
out firings until no chips can fire.” [3] This will serve as the motivation for the chip firing process on binary
trees. We will first specify the rules for labeled chip firing on trees. Then we will discuss the construction of
the algorithm where a strict sorting is achieved. A python program will simulate the algorithm. Finally, we
will look at a reverse algorithm that will also strictly sort the chips.

2 Modification of Labeled Chip Firing Process for Trees

We will be looking at undirected binary trees, where the vertices are labeled using the positive integers
and the root is oriented on the leftmost side. The objective of the modified chip firing process is to have
a final configuration that is sorted such that all the chips on l − 1 are less than all the chips on l, i.e.
l > (l − 1) > (l − 2)... > (l − n) such that when l = n will represent the root. We also want chips to land
on the vertex of same corresponding value, meaning (8) would end up on vertex 8 in the final configuration.
This is what is defined as strictly sorted, as pictured below.

We will start with as many chips as vertices on the graph (i.e. n = |V | placed at the root. The set of
edges (i.e. E = (1, 2), (1, 3), (2, 4), (2, 5), (3, 6), (3, 7)...) will have a local ordering such that for any given pair
of edges of the type (d, e) and (d, f) will imply (d, e) < (d, f). In other words, edge (1, 2) will have a lower
value than the edge (1, 3). Meaning, if (a) < (b), (a) would fire along edge (1, 2) and (b) would fire along
edge (1, 3). As per convention, we can fire as many chips as a vertex’s out degree.

Let us consider the binary tree of level 2. Below will be the list of steps that show the sequences of firing
along with accompanying pictures.

1

Initial Configuration of n=7

Step 1: Fire chips (4) and (7)

Step 2: Fire chips (5) and (6)

Step 3: Fire chips (1) and (2)
2

Step 4: Fire chips (1), (4), and (5)
Step 5: Fire chips (2), (6), (7)

Step 6: Fire chips (2) and (3)

As shown above, when dealing with firings of three chips, we will fire the chip that has the lowest value
of the three chip down one level. The chip that is of middle value will be fired along the upper branch on
the next level. The chip that is of the highest value of the three will fire along the lower branch on the next
level. Even though the root is unstable, once a vertex has reached its out degree, it will take precedent over
the root during the firing process. This will only happen once all vertices within a certain level have reached
their out degree, the firing at one particular vertex at such a level will force the rest of the chips within
that level to be fired at their respective vertices. This is illustrated by steps 4 and 5. Also, lower and upper
branches will be defined as the the edges that are incident to the chip where the firing takes place and are
derived from the ordering on the edges. In the algorithm, we will only consider the chip firings from the
origin, which we will call quads, not the clean up moves that occur past l = 1. A quad is a sequence of two
pairs of chips being fired from the root, as shown in steps 1 and 2. Clean up moves come in two forms:place
holder moves and sweeper moves. A place holder move directly follows a quad and will be a firing of (1) and
(2) from the root with the intent to push higher valued chips outward, shown in step 3. A sweeper move is
a sequence moves that happens once all the vertices within a level reach their respective out degree and at
least one firing happens, forcing all other vertices within that level to fire, again illustrated by steps 4 and 5.

Claim 1. If you follow those rules, then a firing sequence will be uniquely determined by how the vertices
are fired from the origin.

Thus, we’ll specify in our algorithm in the next section by saying how the vertices are fired from the
origin by use of quads.

3

2.1 Refined Algorithm

The algorithm will be take into consideration the chip firing processes presented in section 2.4 by dividing
major parts of the processes into quads. It will not, however, consider the clean up moves

We will graphically show the quads of a tree of level 4 below:

l1 l2

(l − 1)1 l3

4

l4 (l − 1)2

(l − 2)1

The question now is how to strategically choose the quads. We can transform the original binary tree we
have to another binary tree that has the vertices labeled in a way that will help us create the quads. Below
will have one such transformation for a binary tree of level 4:

As shown below in the intermediate mapping, within a given level, the vertices are labeled starting
from 0 to 2l − 1. The interesting thing about this mapping is that the vertices will follow reverse binary
incremeneting. We will illustrate this process below with level 4

5

Original Binary Tree Intermediate Mapping Final Mapping

Ver-
tex

Associating Binary
Number of Vertex

Removal of
First Bit

Reverse of
New Bit

Associated Decimal
Number of Reversed Bit

ϕ of
Vertex

16 10000 0000 0000 0 16

17 10001 0001 1000 8 24

18 10010 0010 0100 4 20

19 10011 0011 1100 12 28

20 10100 0100 0010 2 18

21 10101 0101 1010 10 26

22 10110 0110 0110 6 22

23 10111 0111 1110 14 30

24 11000 1000 0001 1 17

25 11001 1001 1001 9 25

26 11010 1010 0101 5 21

27 11011 1011 1101 13 29

28 11100 1100 0011 3 19

29 11101 1101 1011 11 27

30 11110 1110 0111 7 23

31 11111 1111 1111 15 31

For the last column. ϕ is defined by these equations:

x = 2l +

l−1∑
i=0

(αi)(2
i) αi ∈ {0, 1}

ϕ(x) = 2l +

l−1∑
i=0

(αl−1−i)(2
i)

We can now use ϕ in order to specify which chips are in each quad: li+1 = ϕ(4i + j + 2l), such that
j ∈ {0, 1, 2, 3}.

6

Below will be the quads of sections within the chip firing process up to level 5:
Level 2:

1. l1

Level 3:

1. l1

2. l2

3. (l − 1)1

Level 4:

1. l1

2. l2

3. (l − 1)1

4. l3

5. l4

6. (l − 1)2

7. (l − 2)1

Level 5:

1. l1

2. l2

3. (l − 1)1

4. l3

5. l4

6. (l − 1)2

7. (l − 2)1

8. l5

9. l6

10. l7

11. l8

12. (l − 1)3

13. (l − 1)4

14. (l − 2)

15. (l − 3)

The pattern for the quads is not clear at first glance. However, upon closer investigation, we see that the
first seven quads of Level 5 are the exact seven quads found for Level 4. But then how are the other eight
quads within a level 5 found? They are essentially quads that will push all the remaining chips on level l,
then (l − 1), and so forth until the last quad at level 2 takes place.

In essence, the algorithm that is derived from the quads of a particular binary tree of level, l, is as follows:

7

1. The first less than half of the quads will come from (l − 1)

2. The remaining quads will try to push out the farthest chips that will end up on l, then (l − 1), until
the last quad at level 2 takes places.

Due to the rules we placed on the chip firing process, we resolved that the only important part in
constructing the algorithm is figuring out how to strategically choose chips prior to all (4)...(n) being fired.
This leads to the following theorem.

Theorem 1. Suppose we fire the chips according to the algorithm, once (4)...(n) have been fired, the chips
will topple from that point onward until the strict sorting is achieved.

(Note: Theorem is proved in section 2.4)

2.2 Alternative Reverse Algorithm

In an opposite approach from the previous algorithm, this algorithm fires low numbered chips first. This is
algorithm2 in the program below, and has also been tested up to level 10.

First, we fire chips 2 and 3. This fills out level 1. From now on, whenever chips 2 and 3 return to the
root (because level 1 was fired), we again fire them from the root. We then fire the chips in deeper levels.
The i-th pair of chips (starting from 0) that we fire in level l are computed by taking the reversal of the
binary bits of 2i and 2i+ 1 viewed as a word of l bits, and adding 2l (so that we are offsetting into the chips
from level l). This ordering is chosen so that we never have two chips on one node that need to go in the
same direction.

This algorithm has the pleasant property that it passes through solved configurations for trees of smaller
depth; that is, it transforms a tree with chips 1 to 2l − 1 on their respective nodes into a tree with chips 1
to 2l+1 − 1 on their respective nodes.

We can attempt to generalize this to trees where each node on the same level has the same branching
factor. Let the branching factor of level l be bl. Let there be n levels. Label the nodes and chips by their
path, i = i0i1 . . . il−1, and 0 ≤ il < bl. The firing will be done analogously to the binary tree case, where we
order chips by first length and then lexicographical order, and send the smallest one towards the root, and
the rest down the tree. We fire the chips in a different order. Start with t = t1t2 . . . tk being the empty string
(corresponding to the root), and repeatedly increment t1, carrying to the right when tl = bl+1 to enumerate
a sequence of t. Fire chips 0t, 1t, . . . , (b0 − 1)t from the root, and then increment t. Whenever level 1 fires,
sending chips (which will be chips 0, 1, . . . , b0 − 1) back to the root, immediately fire again from the root
(same as the binary tree case).

We claim that before firing at state t, the chips on the tree are: all yet unfired chips at the root (which
come later in the enumeration than 0t, 1t, . . . (b0 − 1)t), if |i| > |t|, then no chips on node i, and otherwise,
with |i| = l and |t| = k, we have chip i and chips i0i1 . . . il−1jtl+1tl+2 . . . tk where j ∈ {0, 1, . . . , tl − 1}.

2.3 Program based off of Algorithm

Below is a program that was created from the algorithm and is valid for binary trees up to level 10.

class TreeModel():

def __init__(self, level):

self.level = level

self.numnodes = 2 ** (level + 1) - 1

self.model = [set() for i in range(self.numnodes)]

self.model[0] = set(range(1, self.numnodes + 1)) # one-based

def is_stable(self):

return all(len(node) < 3 for node in self.model[1:])

def fire(self, x1, x2):

"""Fire chips x1, x2 from the root, and stabilize."""

8

if not (x1 in self.model[0] and

x2 in self.model[0] and

x1 != x2):

raise ValueError("Can’t fire those chips""")

x1, x2 = min(x1, x2), max(x1, x2)

assert x1 < x2

self.model[0].remove(x1)

self.model[0].remove(x2)

self.model[1].add(x1)

self.model[2].add(x2)

self._stabilize()

def _stabilize(self):

"""Stabilize the tree, called internally after each fire."""

assert self._each_level_even()

levels = [len(self.model[2 ** level - 1])

for level in range(1, self.level + 1)]

assert all(0 <= level <= 3 for level in levels)

assert all(level < 3 for level in levels[1:])

if levels[0] < 3: return # nothing to do

Under these preconditions, there is only one stable configuration

for i in range(1, self.numnodes):

assert len(self.model[i]) <= 3

if len(self.model[i]) == 3:

self._topple(i)

assert self._each_level_even()

assert all(len(self.model[i]) < 3 for i in range(1, self.numnodes))

def _topple(self, i):

"""Topple node i (0-based)."""

assert i >= 1

assert len(self.model[i]) == 3

x0, x1, x2 = sorted(self.model[i])

self.model[i].clear()

self.model[(i - 1) // 2].add(x0)

self.model[i * 2 + 1].add(x1)

self.model[i * 2 + 2].add(x2)

def _each_level_even(self):

return all(len(set(len(self.model[i - 1])

for i in range(2 ** level,

2 ** (level + 1))))

== 1

for level in range(1, self.level + 1))

An algorithm is an iterator object that yields pairs of chips to fire

def algorithm1(n):

T = TreeModel(n)

def quad(level, i):

yields the moves for the ith quad of level (0-based)

assert level >= 2

base = 2 ** level

quart = 2 ** (level - 2)

9

assert 0 <= i < quart

Compute the bitwise reversal of i in the size of quart

j = 0

for biti in range(level - 2):

j = j * 2 + i % 2

i //= 2

assert i == 0

yield (base + 0 * quart + j, base + 2 * quart + j)

T.fire(base + 0 * quart + j, base + 2 * quart + j)

yield (base + 1 * quart + j, base + 3 * quart + j)

T.fire(base + 1 * quart + j, base + 3 * quart + j)

while T.model[1]:

T.fire(1, 2)

yield (1, 2)

if n == 0:

return

for level in range(2, n + 1):

for i in range(level - 2):

num = 2 ** (level - 3 - i)

for j in range(num, 2 * num):

yield from quad(n - i, j)

yield from quad(n - (level - 2), 0)

yield (2, 3)

def algorithm2(n):

def quarto(level, i):

"""Fires the ith quarto at level."""

restores (2, 3) at end

assert level >= 1

base = 2 ** level

quart = 2 ** (level - 2)

assert 0 <= i < quart

compute bitwise reversal of i in size of quart

itmp = i

j = 0

for _ in range(level - 2):

j = j * 2 + itmp % 2

itmp //= 2

assert itmp == 0

x0, x1 = base + 0 * quart + j, base + 2 * quart + j

x2, x3 = base + 1 * quart + j, base + 3 * quart + j

yield (x0, x1)

yield (x2, x3)

itmp = i

n = 0

count the number of trailing 1s in i

while itmp % 2 == 1:

10

n += 1

itmp //= 2

This is how many times we have to fire (2, 3)

to get them to stick (not collapse back to the root)

for _ in range(n + 1):

yield (2, 3)

yield (2, 3)

for level in range(2, n + 1):

for i in range(2 ** (level - 2)):

yield from quarto(level, i)

def check(n, alg):

T = TreeModel(n)

for move in alg(n):

T.fire(*move)

accurate = all(x == {i + 1} for i, x in enumerate(T.model))

print(f"Accurate ({n}): {accurate}")

print("Algorithm 1:")

for n in range(2, 11):

check(n, algorithm1)

print("Algorithm 2:")

for n in range(2, 11):

check(n, algorithm2)

##l = []

##def bump():

def inc(i, x=1):

if i < 0: pass

elif i < len(l): l[i] += x

elif i == len(l): l.append(x)

else: assert False

inc(0)

for i in range(len(l)):

if l[i] == 3:

l[i] = 0

inc(i - 1, 2)

inc(i + 1)

##for i in range(200):

bump()

print(’ ’.join(str(x) for x in l))

##

2.4 Chip Firing Processes for Binary Trees up to Level Four

This section provides the sequences of chip firing moves for binary trees up to level four. Each tree with level
greater than 2 will have two different sequences in accordance to the pairing conventions which are specified
below.

11

First way of pairing chips Second way of pairing chips

Level 2

1. (4),(7)

2. (5),(6)

3. (1),(2)

4. (1),(4),(5)

5. (2),(6),(7)

6. (2),(3)

Level 2

1. (4),(6)

2. (5),(7)

3. (1),(2)

4. (1),(4),(5)

5. (2),(6),(7)

6. (2),(3)

(Note: Steps 1 and 2 are interchangeable. Similarly steps 4 and 5 are as well.)
(Note: (2), (3) will be the last move in every firing process)

Level 3

1. (8),(15)

2. (10),(13)

3. (1),(2)

4. (1),(8),(10)

5. (9),(14)

12

6. (11),(12)

7. (1),(2)

8. (1),(9),(11)

9. (2),(12),(14)

10. (4),(7)

11. (5),(6)

12. (1),(2)

13. (1),(4),(5)

14. (2),(6),(7)

15. (4),(8),(9)

16. (5),(10),(11)

17. (6),(12),(13)

18. (7),(14),(15)

19. (1),(2)

20. (1),(4),(5)

21. (2),(6),(7)

22. (2),(3)

Level 3

1. (8),(12)

2. (10),(14)

3. (1),(2)

4. (1),(8),(10)

5. (2),(12),(14)

6. (9),(13)

7. (11),(15)

8. (1),(2)

9. (1),(9),(11)

10. (2),(13),(15)

11. (4),(6)

12. (5),(7)

13. (1),(2)

14. (1),(4),(5)

15. (2),(6),(7)

13

16. (4),(8),(9)

17. (5),(10),(11)

18. (6),(12),(13)

19. (7),(14),(15)

20. (1),(2)

21. (1),(4),(5)

22. (2),(6),(7)

23. (2),(3)

Level 4

1. (16),(31)

2. (20),(22)

3. (1),(2)

4. (1),(16),(20)

5. (2),(27),(31)

6. (18),(29)

7. (22),(25)

8. (1),(2)

9. (1),(18),(22)

10. (2),(25),(29)

11. (8),(15)

12. (10),(13)

13. (1),(2)

14. (1),(8),(10)

15. (2),(13),(15)

16. (8),(16),(18)

17. (10),(20),(22)

18. (13),(25),(27)

19. (15),(29),(31)

20. (1),(2)

21. (1),(8),(10)

22. (2),(13),(15)

23. (17),(30)

24. (21),(26)

14

25. (1),(2)

26. (1),(17),(21)

27. (2),(26),(30)

28. (19),(28)

29. (23),(24)

30. (1),(2)

31. (1),(19),(23)

32. (2),(24),(28)

33. (8),(17),(19)

34. (10),(21),(23)

35. (13),(24),(26)

36. (15),(28),(30)

37. (1),(2)

38. (1),(8),(10)

39. (2),(13),(15)

40. (9),(14)

41. (11),(12)

42. (1),(2)

43. (1),(9),(11)

44. (2),(12),(14)

45. (4),(7)

46. (5),(6)

47. (1),(2)

48. (1),(4),(5)

49. (2),(6),(7)

50. (4),(8),(9)

51. (5),(10),(11)

52. (6),(12),(13)

53. (7),(14),(15)

54. (8),(16),(17)

55. (9),(18),(19)

56. (10),(20),(21)

57. (11),(22),(23)

15

58. (12),(24),(25)

59. (13),(26),(27)

60. (14),(28),(29)

61. (15),(30),(31)

62. (1),(2)

63. (1),(4),(5)

64. (2),(6),(7)

65. (4),(8),(9)

66. (5),(10),(11)

67. (6),(12),(13)

68. (7),(14),(15)

69. (1),(2)

70. (1),(4),(5)

71. (2),(6),(7)

72. (2),(3)

Level 4

1. (16),(24)

2. (20),(28)

3. (1),(2)

4. (1),(16),(20)

5. (2),(24),(28)

6. (18),(26)

7. (22),(30)

8. (1),(2)

9. (1),(18),(22)

10. (2),(26),(30)

11. (8),(12)

12. (10),(14)

13. (1),(2)

14. (1),(8),(10)

15. (2),(12),(14)

16. (8),(16),(18)

17. (10),(20),(22)

16

18. (12),(24),(26)

19. (14),(28),(30)

20. (1),(2)

21. (1),(8),(10)

22. (2),(12),(14)

23. (17),(25)

24. (21),(29)

25. (1),(2)

26. (1),(17),(21)

27. (2),(25),(29)

28. (19),(27)

29. (23),(31)

30. (1),(2)

31. (1),(19),(23)

32. (2),(27),(31)

33. (8),(17),(19)

34. (10),(21),(23)

35. (12),(25),(27)

36. (14),(29),(31)

37. (1),(2)

38. (1),(8),(10)

39. (2),(12),(14)

40. (9),(13)

41. (11),(15)

42. (1),(2)

43. (1),(9),(11)

44. (2),(13),(15)

45. (4),(6)

46. (5),(7)

47. (1),(2)

48. (1),(4),(5)

49. (2),(6),(7)

50. (4),(8),(9)

17

51. (5),(10),(11)

52. (6),(12),(13)

53. (7),(14),(15)

54. (8),(16),(17)

55. (9),(18),(19)

56. (10),(20),(21)

57. (11),(22),(23)

58. (12),(24),(25)

59. (13),(26),(27)

60. (14),(28),(29)

61. (15),(30),(31)

62. (1),(2)

63. (1),(4),(5)

64. (2),(6),(7)

65. (4),(8),(9)

66. (5),(10),(11)

67. (6),(12),(13)

68. (7),(14),(15)

69. (1),(2)

70. (1),(4),(5)

71. (2),(6),(7)

72. (2),(3)

3 Future Work

We would like to see if the program that was based off the algorithm works for binary trees higher than
level 10. We would also want to investigate creating an algorithm for the strict sorting of general trees. As
shown in 2.3, there are two different chip firing processes for each tree of varying levels because of how we
paired chips for firing in 2.1. This begs the question, can we construct different algorithms that allows for
confluence? Another thing to consider is constructing tree graphs that are efficient in terms of how quickly
the chip firing process takes so that the chips will sort.

References

[1] Per Bak, Chao Tang, and Kurt Wiesenfeld. Self-organized criticality: An explanation of the 1/ f noise.
Phys. Rev. Lett., 59:381–384, 1987

[2] Deepak Dhar. The abelian sandpile and related models. Physica A: Statistical Mechanics and its Appli-
cations, 263(1):4 – 25, 1999

[3] Sam Hopkins, Thomas McConville, and James Propp. Sorting via Chip-Firing. 2016.

18

